
Towards Adaptive Optimal Control
of the Scramjet Inlet

Nilesh V. Kulkarni

Advisors:

Prof. Minh Q. Phan
Dartmouth College

Prof. Robert F. Stengel
Princeton University

JUP Quarterly Review
October 23, 2003

Presentation Outline

Hypersonic magneto-hydrodynamic (MHD) generator
Dynamic programming based closed-loop optimal
control approach review
Reinforcement learning/adaptive critic based design
Conclusions

Magneto-Hydrodynamic (MHD)
Generator at the Inlet

Controlled Electron Beams

Magnetic FieldFlow In

Flow Out
Elec

trodes

Extracted Power

Magnetic Field

In
du

ce
d

C
ur

r e
nt

Electrodes

Cross-sectional
View

Electron Beams

Schematic of the MHD Generator

MHD Generator Model

Assumptions
One-dimensional steady state flow
Inviscid flow
No reactive chemistry
Low Magnetic Reynolds number

x-t equivalence

Flow Equations
Continuity Equation

Force Equation

0)(
=

dx
uAd ρ

x - Coordinate along the channel
- Fluid density

u - Fluid velocity
A - Channel cross-section area

2)1(uBk
dx
dP

dx
duu σρ −−=+

P - Fluid pressure
k - Load factor

- Fluid conductivity
B - Magnetic field

ρ

σ

)1(
0

ieΩΩ+
=

σσ eΩ - Electron Hall parameter

iΩ - Ion Hall parameter

Flow Equations...
Energy Equation

Continuity Equation for the electron number
density

- Fluid internal energy
- Energy deposited by

the e-beam

ne - Electron number density
jb - Electron beam current

- E-beam energy
Z - Channel width
Y - Ionization potential

βσ
γε

ρ QBukk
dx

ud
u +−−=

+
22

2

)1(
)

2
(

bε

ε

βQ

22)1(1
e

i

bbie

e

n
ZeY

j
dx

k
vnd

βε
−=

⎥
⎦

⎤
⎢
⎣

⎡
ΩΩ−+

Performance Characterization

Attaining prescribed values of flow variables at the channel exit
(Mach number, Temperature)
Maximizing the net energy extracted which is the difference
between the energy extracted and the energy spent on the e-beam
ionization
Minimizing adverse pressure gradients
Minimizing the entropy rise in the channel
Minimizing the use of excessive electron beam current

[] []
[]

∫
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++

+−−
+

+−+−=

fx

b

efef

dx
jrdSqPhq

ABukkAQ
uA
q

MxMpTxTpJ

0 2
1

2
32

221

2
2

2
1

)(

)1(

)()(

σ
ρ β

Features of our optimal controller design technique
Works for both linear and nonlinear systems
Data-based
Finite horizon, end-point optimal control problem
Equivalent to time (position) varying system dynamics

Predictive Control Based Optimal
Control

[1] Kulkarni, N.V. and Phan, M.Q., “Data-Based Cost-To-Go Design for Optimal Control,” AIAA Paper
2002-4668, AIAA Guidance, Navigation and Control Conference, August 2002.
[2] Kulkarni, N.V. and Phan, M.Q., “A Neural Networks Based Design of Optimal Controllers for
Nonlinear Systems,” AIAA Paper 2002-4664, AIAA Guidance, Navigation and Control Conference, August
2002.

Dynamic Programming Based State
Feedback Control

Using the dynamic programming principle to design
the controllers along the channel
An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first
decision.

- Richard Bellman

Assume available sensors along the channel

Dynamic Programming Based
State-Feedback Architecture

Inlet MHD Channel

Channel
Cost

Function

Subnets

Controller

Sectional
Cost

Functionw(40)

J3

u(40)-u(59)

w(41)-w(60)

J

Details of the Control Architecture

Subnets

Controller

Sectional
Cost

Function
w(20)

u(20)-u(39)

w(21)-w(40)

J2

Controller
(Trained)

Subnets

Controller

Sectional
Cost

Function

u(0)-u(19)

w(1)-w(20)

J1

w(0)

Controller
(Trained)

Using Subnets to Build the Cost Function
Network
ρk
vk
Pk
nek

ρk+1
vk+1
Pk+1
ne(k+1)

Electron beam
current

jb(k)

Physical picture describing Subnet 1

Flow in Flow
out

Continuously spaced e-beam windows
each having a length of 0.5 cm
Subnet 1 chosen to correspond to the
system dynamics between a group of 4
e-beam windows
Length of the channel = 1 m
Need subnets up to order 50

Subnet m
(A two layer

Neural
Network)

x
ρk
vk
Pk
nek
jb(k)
jb(k+1)
jb(k+2)
…
jb(k+m-1)

ρk+m

vk+m

Pk+m

ne(k+m)

Subnet m, inputs and outputs.

Formulation of the Control Architecture:
Neural Network Controller

Flow variables
at the sensor

location

Electron
beam profile

x
ρ
v
P
ne

Controller
Coefficient

Neural
Network

α1

M

α2

α9

Fixed Layer
Basis Function

Network

jb(1)

jb(2)

jb(r)
M

∑
=

=
9

1

)()(
k

kk iij φα

Reinforcement Learning/Adaptive Critic
Architectures

Need to account for model uncertainties and disturbances or noise .
Reinforcement Learning/Adaptive Critic Architectures are well-
suited to handle model uncertainties and noise
The existing design serves as a good starting point for
controller/model updating
The best features of the proposed dynamic programming based
approach and the adaptive critic approaches can be combined

Value Function Based Reinforcement
Learning

Consider a system with a discrete state and action space
Initial the cost-to-go function or the Value function for each state:
V(sk)
Initialize the action policy (controller) for each state : π(sk)
Simulate an episode starting with a random initial state
For each state occuring in the episode update the Value function
using the principle of dynamic programming
For each state occuring in the episode update the policy to
minimize the value function
Simulate another episode and loop

Implementing Value Function Based
Reinforcement Learning

For a given episode:

t = T - 2 t = T - 1 t = T
Forward direction

Given st
Choose at = π(st)
Get rt = rt(st,at)

Get sT
Get rT = rT(sT)

Given st
Choose at = π(st)
Get rt = rt(st,at)

Backward direction

Update V(sT-1) ← V(sT-1) +
α(rT-1 + rT - V(st))

Update π(sT-1) = ()TtTta
rasr

t

+−),(min arg 1

Update V(sT-2) ← V(sT-2) +
α(rT-2 + V(sT-1) - V(sT-2))

Update π(sT-2) = ())(),(min arg 112 ++− + tttTta
sVasr

t

Implementing Q-Function Based
Reinforcement Learning

For a given episode:

t = T - 2 t = T - 1 t = T
Forward direction

Given st
Choose at = π(st)
Get rt = rt(st,at)

Get sT
Get rT = rT(sT)

Given st
Choose at = π(st)
Get rt = rt(st,at)

Backward direction

Update Q(sT-1, aT-1) ← Q(sT-1, aT-1) +
α(rT-1 + rT - Q(sT-1, aT-1))

Update π(sT-1) =),(min arg 1 tTta
asQ

t
−),(min arg 2 tTta

asQ
t

−

Update Q(sT-2, aT-2) ← Q(sT-2, aT-2) +
α(rT-1 + - Q(sT-2, aT-2))

Update π(sT-2) =

),(min arg 1 tTta
asQ

t
−

Q-Function Based Controller Updating
the MHD Channel

Develop the subnets from the available simulation package that
captures the known physics
Design the optimal controllers using the dynamic programming
based control architecture.
Obtain two layer network equivalence of the optimal
controllers and the action dependent critics
Provides good base line controllers & action dependent critics
Improve these optimal controllers and the action dependent
critics from real time data to account for stochastic factors
(model uncertainties and disturbance or noise)

Implementation Details
From sensor 4 to the end of the channel (Assume 4 sensors in the
channel) :

Trained
Subnets

Trained
Controller
Coefficient
Network

Fixed
Cost

Function
Network

wsensor4

V *(wsensor4)

wsensor4+∆x

wexit

M

usensor4

uexit -∆x

M

Fixed
Basis

Function
Network

α1

αj
M

Equivalent
Neural
Network

Trained
Baseline
Action

Dependent
Critic

Trained
Baseline

Controller
Coefficient
Network

wsensor4

α1

αj
M

E [Q*(wsensor4, α1,… αj)]

Implementation Details

Update
Baseline
Action

Dependent
Critic

Available
Real Data

wsensor4

α1

αj
M

Available Computed Values
of the Expected Cost-go-

function

E [Q(wsensor4, α1,… αj)]

With available real data calculate the new available values of
expected cost-to-go function from sensor 4 to the end of the
channel
Update the baseline action dependent critic from sensor 4

With the updated ADC, update the baseline controller coefficient
network Updated

Baseline
Action

Dependent
Critic

Baseline
Controller
Coefficient
Network

wsensor4

α1

αj
M

E [Q*(wsensor4, α1,… αj)]

1

From sensor 3 to the end of the channel

Trained
Subnets

Baseline
Controller
Coefficient
Network

Fixed
Cost

Function
Network

wsensor3

V (wsensor3)

wsensor3+∆x

wsensor4

M

usensor3

usensor 4 -∆x

M

Fixed
Basis

Function
Network

α1

αj
M

wsensor4

Equivalent Action Dependent Critic from Sensor 3

+
+

Trained
Subnets

Baseline
Controller
Coefficient
Network

Fixed
Cost

Function
Network

wsensor4+∆x

wexit

M

usensor4

uexit -∆x

M

Fixed
Basis

Function
Network

α1

αj
M

From sensor 3 to the end of the channel

Equivalent
Two Layer

Neural Network

Baseline
Action

Dependent
Critic from

Sensor 3

Baseline
Controller
Coefficient
Network

wsensor3

α1

αj
M

E [Q(wsensor3, α1,… αj)]

Action dependent critic-controller architecture
from sensor 3

Updating the Sensor 3 ADC with Real Data

Critic Updating: Uses principle of optimality

E [Q(wsensor3, α1,… αj)]desired = E[U(wsensor3, α1,… αj)] + E [Q*(wsensor4, α1,… αj)]

Available from the
updated sensor 4 ADC

Available from the
real data

Used to update the
baseline sensor 3 ADC

Controller Updating: Uses backpropagation

Backpropagate through the updated critic to get
α

α
∂

∂ ∗)],([3sensorwQE

to update the controller

Critic-Controller Updating
Critic Updating:

Updated
Baseline
Action

Dependent
Critic

Updated
Baseline

Controller
Coefficient
Network

wsensor4

α1

αj
M

E [Q*(wsensor4, α1,… αj)]

Baseline
Action

Dependent
Critic

Baseline
Controller
Coefficient
Network

wsensor3

α1

αj
M

E [Q(wsensor3, α1,… αj)]

E[U(wsensor3, α1,… αj)]

+ +

_

Controller Updating:
Same as the controller updating from sensor 4

Conclusions

Developed a neural network based optimal controller
architecture for the hypersonic MHD channel
Data-based approach
Implemented open loop and closed loop designs
ADHDP based design to account for stochastic factors
in progress

